ENVIRONMENTAL GEOGRAPHIC INFORMATION SYSTEMS (EGIS) at STENNIS SPACE CENTER (SSC)

Hugh Carr, Doc Smoot, Joy Parikh
NASA Environment and Energy Conference
Wednesday, May 26, 2004
OBJECTIVE

• Background of SSC Environmental GIS (EGIS)

• Principal Center Activities

• SSC’s GIS Applications
 – Environmental Emergency Response Tool
 – CERCLA
 – Facilities Master Planning
 – Natural Resource Management and Site Assessment
STENNIS SPACE CENTER

Landsat ETM Data

Slidell, LA
Bay St. Louis, MS
INTRODUCTION

As a Federal agency, NASA is subject to the environmental provisions of:

- National Environmental Policy Act (NEPA)
- Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund)
- National Historic Preservation Act
- Endangered Species Act (ESA)
- Resource Conservation and Recovery Act (RCRA)
INTRODUCTION

• These regulations often require reports, maps, models, and quantitative measurements of:

• Chemical Use
• Wastewater discharge
• Air Emissions
• Environmental Assets
• Natural Resources
• Cultural Resources

Consequently, there is a demand for tools that consolidate ecological, cultural, and geological information into one central resource to facilitate environmental management and informed decision making.
GIS is a *system* of computer software, hardware data, and personnel capable of displaying, analyzing, and modeling geographically referenced information. This tool allows for the storage and analyses of vast amounts and various kinds of geospatial data.
BEGINNING of SSC EGIS

• NASA Environmental Office
 – Assess and monitor impacts of onsite activities
 • Environmental Justice
 – Propulsion testing

• Building the database
 – Incorporated data collected for the Advanced Solid Rocket Motor Program (ASRM)
 • Primarily included data of the Center
 – Procured data from government information sources
EXTENT OF EGIS

- Four counties in Mississippi and four parishes in Louisiana
- Over 400 data layers including vector and raster data from various public and private sources
- Over 100GB of data
ORGANIZATION OF DATA LAYERS

Hydrology
Represents the classification and use of surface and subsurface water.

- **Subsurface**
 - Wells

- **Surface**
 - Hydrologic Units/Subunits
 - Water Bodies
 - Rivers/Streams

Infrastructure
Represents cultural features that support the basic activities of "modern" life.

- **Transportation**
 - Roads
 - Railroads

- **Utilities**
 - Natural Gas Pipelines

Cadastral/Geodetic
Represents the locational information required to define the geographic position of a place or feature.

- **Public Land Survey System (PLSS)**
 - Sections
 - Subdivisions
 - Townships
 - Parcel Boundaries

- **Referencing System**
 - 1:24,000 Quadrangle Grid
 - 1:100,000 Quadrangle Grid

Physical Geography
Represents the conditions reflecting the natural environment.

- **Land Characterization**
 - Land Use
 - National Wetlands Inventory (NWI)
 - Q3 Flood
 - Vertebrate Species Locations
 - Threatened & Endangered Species Habitats

- **Physiography**
 - Soils
 - Surface Geology
 - Contours
 - Elevation

Geo-Political
Represents the various boundaries used or defined by federal, state and local units of government.

- **Administrative**
 - State Boundaries
 - County Boundaries
 - Census Places
 - Stennis Space Center Boundaries
 - Public School District
 - County Zoning Boundaries

- **Political**
 - Senate Districts
 - House of Representatives District
 - Voting Precincts
 - Zip Code Boundaries
ORGANIZATION OF DATA LAYERS

<table>
<thead>
<tr>
<th>Socio-Economic</th>
<th>Represents the aspects of human society covering past and current conditions</th>
</tr>
</thead>
</table>
| **Census Data** | Block Groups
Census Tracks
Census Demographics |
| **Cultural** | Hospitals
Schools
Public Colleges and Universities
Buildings/Parking Lots
Archaeological Sites |
| **Environmental** | Hydrogen Tanks
Acoustic Levels |
| **Remote Sensing Data** | Landsat Thematic Mapper (30 Meter)
Spot (20 Meter)
Radarsat (12 Meter)
ATLAS (2.5 Meter)
Star3i (2.5 Meter; 10 Meter)
AVIRIS (2 Meter)
Positive Systems (1 and 3 Meter)
IKONOS (1 and 4 Meter) |

Data Providers & Collaborators

- NASA Center Archive
- US Census Bureau
- US Geological Survey
- FEMA
- Soil Conservation Service
- US Corps of Engineers
- US Fish and Wildlife Service
- Tax Assessor’s Office
- Planning Commission
- Coastal Environments, Inc.
- Department of Marine Resources
- Gulf Regional Planning Commission
- Dept of Environmental Quality
- Universities and Colleges
Source: Hancock County Tax Assessor's Office
COE
Property Ownership

- Owner's Name
- Owner's Address
- Parcel Acreage
- Legal Description

Parcel Number: 079-0-32-002.00
Owner: Boelte, Gerald A.
Legal Description: Section south of Texas Flat Rd.
Total Acreage: 1601
NOISE POLLUTION MODELING

Monitor effects of operations onsite
Assess potential offsite impacts from propulsion testing on site
SSC LANDUSE CHANGE
Characterize landcover to predict impacts of current activities and future programs.
In May 2000, Stennis Space Center was designated as the Principal center for support of NASA’s Environmental GIS activities.

SSC has led a NASA-wide effort to develop and deliver a baseline EGIS for each of NASA’s 14 field centers and component facilities. These databases were designed to support NASA’s Environmental Management Program.
EGIS DELIVERED TO FIELD CENTERS

- Glenn Research Center
- Goddard Space Flight Center
- Wallops Flight Facility
- Langley Research Center
- Marshall Space Flight Center
- Kennedy Space Center
- Michoud Assembly Facility
- Stennis Space Center
- Johnson Space Center
- White Sands Test Facility
- Jet Propulsion Laboratory
- Dryden Flight Research Center
- Ames Research Center

Map of the United States showing locations of NASA field centers.
PRINCIPAL CENTER ACTIVITIES

• Five-year MOA; currently in 4th year

• Collaborate with NASA field centers to develop requirements

• Designed, delivered, installed baseline EGIS database, IKONOS imagery, and metadata to each Center

• Customized, delivered, installed agency-wide emergency response application to four centers
FY04 PRINCIPAL CENTER ACTIVITIES

- Web-based Agency-wide EGIS Portal connecting NASA HQ to select Field Centers
- Building upon the original EGIS databases
- Initially includes SSC, MSFC, KSC, GRC, GRC-PBS
- Password protected, query, display, analysis capabilities, electronic data exchange
- Future efforts: integration of other NASA Field Centers and development of NASA-Wide Web applications
• Emergency Response/Disaster Preparedness
 - Emergency Environmental Response Tool (EERT)

• Facilities Management and Master Planning
 - Conversion of CADD data to GIS format
 - Development of a web-based application

• Groundwater Monitoring and Chemical Remediation
 - CERCLA

• Resource Management and Site Assessment
EMERGENCY ENVIRONMENTAL RESPONSE TOOL (EERT)

An Environmental Response application was developed at SSC to support NASA’s emergency response and preparedness requirements. This application provides the ability to effectively plan, manage, and coordinate environmental emergency incidents and facilitate data sharing among onsite personnel to provide near real-time management capabilities.

The Environmental Office in conjunction with the Fire Department, Security Office, and Facilities Management Office can use EERT to develop a comprehensive emergency management plan in the event of a major chemical release.
ENIRONMENTAL EMERGENCY RESPONSE TOOL (EERT)

- Interfaces with ALOHA (Areal Locations of Hazardous Atmosphere) model and chemical inventory to plot plume dispersion

- Incorporates real-time weather information to display wind speed and direction; provides notification of major changes

- Establishes and geographically plots security perimeters

- Updates and monitors the status of impacted buildings and traffic control points
INCIDENT SIMULATION

1. Select Location
2. Set Buffer Size
3. Set Event Type
**** BUILDING STATUS REPORT ****

Report Date: 7/26/2003 Report Time: 1:15:01 PM

Building Number: 1100
Building Status: Notified
Point of Contact: Jerry Stover
POC Phone Number: 689-5881
POC Agency: USN/ROCC

Building Number: 1100
Building Status: Notified
Point of Contact: Claudia Schorrnick
POC Phone Number: 689-1704
POC Agency: NOAA/NDBC

Building Number: 1100
Building Status: Notified
Point of Contact: Tim Reid
POC Phone Number: 689-2491
POC Agency: NOAA/NDBC

Building Number: 1100
Building Status: Notified
Point of Contact: Bob Cagno
POC Phone Number: 689-7481
POC Agency: NOAA/NDBC

**** TRAFFIC CONTROL POINT REPORT ****

TCP_ID STATUS NAME
1 Entry Control Point Road C
2 Pending Ellich Boulevard
3 Entry Control Point Ellich Boulevard
4 Established 1165 Freeway Access and Parking
5 Pending NHG Access and Parking
6 Pending NHG Access and Parking
7 Established Road C
8 Established 1160 Freeway Access and Parking
9 Established Ellich Boulevard
10 Pending Ellich Boulevard
11 Established 1160 Access and Parking North
FINAL PRODUCT

- Established Traffic Control Points
- Evacuated Building
- Emergency Vehicle Entry Control Point
- Cordoned Building
- Notified Building
- Pending Traffic Control Points
- Hazard Plume
EERT INTEGRATION AT NASA

Developed a uniform application that allows NASA Centers to work together more efficiently, thus improving overall coordination and collaboration.
SSC ENVIRONMENTAL GIS APPLICATIONS

- Emergency Response/Disaster Preparedness
 - Emergency Environmental Response Tool (EERT)
- Facilities Management and Master Planning
 - Conversion of CADD data to GIS format
 - Development of a web-based application
- Groundwater Monitoring and Chemical remediation
 - CERCLA
- Resource Management and Site Assessment
CAD/GIS INTEGRATION in ArcGIS
FACILITIES MASTER PLAN (FMP) WEB PORTAL

- Pilot project to design, develop, and implement a web-based SSC FMP GIS application
- Aligns with NASA’s Master Planning NPG 8820.2A
- Integrates narratives, databases, maps, and spatial query tools
- Provides true planning tool
- Linked to CADD database
- Initiated web-based – available site-wide
HYPERLINKS
INFRASTRUCTURE

Facility Master Plan

Infrastructure Layers

- Existing Buildings
- Free Areas Roads
- Parking Lots
- Tanks
- Railroads
- Drainage Ditches
- New Buildings
- Two-Lane Arterial Roads
- Two-Lane Collector Roads
- Two-Lane Local Roads
- Four-Lane Arterial Roads
- Four-Lane Collector Roads
- Imagery

Refresh Map

<< Close Menu >>

Four-Lane Pathways
Four-Lane Arterial Roads
Two-Lane Local Roads
Two-Lane Collector Roads
New Buildings
Parking Lots
Existing Buildings
ENVIRONMENTAL
NATURAL RESOURCES
Calculate how many rooms are occupied by a specific department/program.

Generates room statistics including occupant name, phone, email, number of square feet occupied, and manager.
FUTURE SECURITY GIS CAPABILITIES

E-911 Computer Aided Dispatch

Security Patrol Car #3:
Sgt. John Doe
Lat: -89.57
Lon: 30.39
1400 hrs
12-04-04

Live CCTV Cameras

Emergency Floorplan Analysis Tool

Camera Controls
- Pan Left
- Pan Right
- Zoom In
- Zoom Out
- Tilt Up
- Tilt Down
SSC ENVIRONMENTAL GIS APPLICATIONS

• Emergency Response/Disaster Preparedness
 -Emergency Environmental Response Tool (EERT)

• Facilities Management and Master Planning
 -Conversion of CADD data to GIS format
 -Development of a web-based application

• Groundwater Monitoring and Chemical Remediation
 -CERCLA

• Resource Management and Site Assessment
CERCLA INTRODUCTION

- As part of the historic operations at SSC, various contaminants have been disposed and released.
- SSC began a site identification and investigation process in 1990, and have designated 9 sites as clean-up areas.
- The Relational Laboratory Information Management System (RLIMS) is the repository for current and future chemical data.
CLEANUP SITES

Area A
Air Force Disposal Site Pesticide Operations Area
When: 1970s - 1990s
Where: Western boundary of SSC near Buildings 2501 and 2502
What: Contaminated debris and pesticide operation waste
Contaminants: Organic compounds, dioxin, pesticides/herbicides, and metals
CERCLA GIS WEB PORTAL

- Immediate access to SSC’s clean up sites via Internet
- Facilitates reporting, compliance, site-assessment
- Dynamic 2-D maps, quarterly reports, analytical spreadsheets, site photos, EPA substance registry list, etc.
- Flexible, cost-effective
- 30+ year archival
Area D
Recreational Disposal Area
When: 1960s - 1970s
Where: Southwestern portion of SSC near Building 2411
What: Used chemicals discharged into limestone pits for treatment
Contaminants: Organic compounds and pesticides
Status: Comment period closed and Decision Document signed. Soil removals completed. Depressed at bottom of hillside was excavated, backfilled with clean fill, graded, and seeded. Installation of groundwater pump and treatment system began in Summer 2001.
LINK TO EPA
3-D VISUALIZATION
SSC ENVIRONMENTAL GIS APPLICATIONS

- Emergency Response/Disaster Preparedness
 - Emergency Environmental Response Tool (EERT)

- Facilities Management and Master Planning
 - Conversion of CADD data to GIS format
 - Development of a web-based application

- Groundwater Monitoring and Chemical Remediation
 - CERCLA

- Resource Management and Site Assessment
SITE ASSESSMENT
TIMBER MANAGEMENT

Timber Management Work Plan
Fee Area FY 2003

- Federal Land Ownership
- Bufferzone
- Management Plan:
 - Prescribed Burning
 - Timber Marking
 - Mitigation Harvest
 - Chop-Brown-Burn-Plant
 - Brown-Burn-Plant
 - Roads
INVASIVE SPECIES MONITORING

- Cogongrass has been designated as the seventh worst weed in the world, with over 1.2 billion acres infested worldwide.

- Salvinia Minima

Stennis Space Center
WETLAND MITIGATION SITES
WETLANDS INVENTORY

Data from wetlands mitigation sites are integrated into the EGIS to provide reports on species diversity, vegetative cover, wetland hydrology, and tree types.
FLOODPLAINS
Stennis Space Center

DEER AUTO ACCIDENTS

Monthly Distribution of Accidents

<table>
<thead>
<tr>
<th>Month</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
</tr>
</tbody>
</table>

Auto Accidents Involving Deer at Stennis Space Center

Month and Year of Accident

MONTHLY DISTRIBUTION OF ACCIDENTS

Total Number of Accidents

Year 2000 Accidents
Year 2001 Accidents

(does not include numbers for Oct, Nov or Dec 2001)
• Continue to develop uniform datasets and applications that allow offices throughout NASA to work together more efficiently, thus improving overall coordination and collaboration.

Leverage other programs to provide value to NASA’s Environmental Management division and to the participating centers and major facilities.

• Continue to design an SSC Enterprise-wide GIS for managing, maintaining, and sharing geographic data with applications in:
 - Homeland Security/Emergency Response
 - Resource Management
 - Facilities Master Planning
 - Environmental Site Assessment
GIS has become an integral part of environmental management. It integrates large volumes of spatial data from a variety of sources and provides planners, policy makers, and scientists, with the means to visualize and analyze environmental data to make better decisions. NASA has taken an active role in the utilization of this technology and is committed to community safety and protection of the environment.

In recent years, the SSC EGIS has emerged as a support tool for natural resource management, groundwater monitoring, emergency response, land cover assessment, facilities management, environmental assessment, wildlife tracking, and noise pollution modeling.

Benefits
GIS has become an integral part of environmental management. It integrates large volumes of spatial data from a variety of sources and provides planners, policy makers, and scientists, with the means to visualize and analyze environmental data to make better decisions. NASA has taken an active role in the utilization of this technology and is committed to community safety and protection of the environment.

NASA’s Unique Capacity and Contributions
NASA has become a recognized leader in geospatial applications and environmental management in the scientific community. The Environmental Management Division enables environmentally sound mission success through four key areas: Prevention, Conservation, Compliance and Restoration.

NASA SSC Environmental Office is collaborating with other NASA field centers to promote GIS and improve the way we monitor and manage our environment and natural resources.
Facility management and safety officers are responsible for ensuring the physical security of the facilities, staff, and equipment as well as for responding to environmental emergencies, such as accidental releases of hazardous materials. All phases of emergency management (planning, mitigation, preparedness, and response) depend on data reliability and system interoperability from a variety of sources to determine the scope of the event.

How Does the EERT Work?

The EERT integrates and utilizes existing NASA environmental and facility information, including GIS vector layers, hazardous materials (HAZMAT) data, point-of-contact information, and satellite imagery. Furthermore, it incorporates real-time weather information and can model chemical release plumes from government validated and approved models, such as the Aerial Locations of Hazardous Atmosphere (ALOHA) model. The EERT allows emergency response teams to monitor traffic control points, to identify entry control point(s) into and out of a cordoned area, and to monitor evacuated buildings within the cordoned area.

Decision Support Solutions

The EERT is a key geospatial component of NASA’s Environmental Management System that uses both GIS and remote sensing technologies to support NASA’s response and preparedness requirements. The primary advantages of using the new system include the ability to identify unique aspects of the event site, to identify specific locations of hazardous materials, to specify safety zones and their appropriate sizes, and to track the extent of dangerous plumes. This flexibility permits more efficient and effective use of resources, such as the placement of blockades, emergency response teams, and special equipment.
The SSC Facilities Master Plan provides a graphic, statistical, and narrative description of land, buildings, topography, climate, resources, and operations in and around Stennis Space Center. It contains information for planning SSC’s growth and expansion, and for anticipating the impact such development may have on the environment and the surrounding communities.

Information regarding the physical components, equipment, and infrastructure of industrial facilities are largely developed and managed with Computer Aided Design (AutoCAD) programs for applications in municipal infrastructure, utility management, gas and electric maintenance, and organizational planning. Successfully integrating these drawings and other facility management data with existing GIS and remote sensing data layers will help provide decision makers and site planners access to all relevant information pertaining to the environmental conditions, current, and planned facilities at SSC. It is the hope of NASA’s Environmental Officers to create a web-enabled GIS database from unique and existing data sources such that the sum of its contents is greater than the sum of its parts. An important advantage of integrating databases is that the data is accessible for users within and outside the centralized computing site.
As NASA’s Lead Center for Rocket Propulsion Testing, Stennis Space Center is responsible for developing and testing large liquid propellant rocket systems. Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), mandates that the federal facilities remediate areas where hazardous waste has been generated, stored, treated, or disposed in the past. To date, nine clean-up sites have been identified at SSC, and environmental management personnel have taken a proactive approach to restore each area. To aid in this effort, a web enabled CERCLA GIS database is being developed to help inventory, monitor, manage, and restore chemically contaminated areas. Specifically, this GIS is used to measure the scope and extent of contamination, detect concentration patterns, and model the migration of contaminants.

An important aspect for environmental characterization is providing a graphic visualization of site conditions including spills, emissions, or contamination plumes. The ability to automate the production of this information is valuable for creating compliance reports for regulatory agencies, generating management reports for internal use, evaluating the progress of a remediation program, providing information in response to unforeseen emergencies, and providing outreach material to the public.