Ecological Niche Factor Analysis
Modelling species Habitat Suitability with presence only data

Alexandre Hirzel
Lab. of Conservation Biology
University of Lausanne, Switzerland
Introduction
Habitat suitability modelling

Environmental space

Geographic space

Elevation
Slope
Limestone
Glacier

Geographic space
Habitat Suitability: input

- Ecogeographical maps
- Observation map

- Rock frequency
- Altitude
- Distance to towns

CORRELATED
Habitat Suitability: input

- **Input**
 - Ecogeographical
 - Observation map

![Observations](image)

- Sighting = Presence
- No sighting = Absence???
Absences

An “absence” (=no observation) may be due to:

- Species undetected ⇒ FALSE ABSENCE
- Dispersal barriers ⇒ FALSE ABSENCE
- Local temporary extinction ⇒ FALSE ABSENCE
- Too small territory ⇒ FALSE ABSENCE
- Unsuitable habitat ⇒ TRUE ABSENCE
Habitat Suitability: input

- Input
 - Ecogeographical
 - Observation map

Observations
Ecological Niche Factor Analysis
Ecological Niche Factor Analysis

• Principles:
 – Summarises all variables into a few uncorrelated factors.
 – Takes only presence data into account.
 – Compares the species distribution to the global (available) environment.
 – Built on the concepts of marginality and specialisation.
Marginality & Specialisation

- Species niche is a subset of the global environment.
- Species set of EGV differs from global set by:
 - **Marginality** (deviation from the global mean)
 - **Specialisation** (niche breadth)

\[
\text{Marginality} = \frac{|\mu_G - \mu_S|}{1.96\sigma_G}
\]

\[
\text{Specialisation} = \frac{\sigma_G}{\sigma_S}
\]
Factor computation: Marginality

- **MF** = Marginality factor
- **μ_G** = global barycentre
- **μ_S** = species barycentre

Projection along the marginality factor
Factor computation: Specialisation

Min. species variance

Max. global variance

Specialisation factor
From geographic space to environmental space

24 predictors

6 factors = 80% of information
Habitat suitability
Habitat suitability computation

• Let’s keep only the first factors (here, two)

• We compute for each cell its probability to be in the species distribution
Median envelopes

- **BIOMAPPER 1.0**
 (Hausser 1995, Hirzel *et al.* 2002)

- Envelope defined by the *frequency distribution* and the *median*.

- Assumes an unimodal and *symmetrical* distribution.
Compute the geometric mean of the distances:

\[H_G = \sqrt[N]{\prod_{i=1}^{N} d_i} \]

BIOMAPPER 3.0 (Hirzel & Arlettaz 2003, Hirzel et al. 2004)
Distance geometric mean

Do that for the whole environmental space, computing a habitat suitability field.
Distance geometric mean

50% of the points: core habitat
90% of the points: marginal habitat

Envelopes are based on this field and the observation points.
Distance harmonic mean

Similar to the geometric mean, but based on the harmonic mean of the distances:

\[
H_H(P) = \frac{1}{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\delta(P, O_i)}}
\]
Minimum distance

Or just keep the distance to the closest point:

$$H_{\text{min}}(P) = \text{Min}\{\delta(P, O_i)\}$$
Biomapper

• This method has been implemented into a software named *Biomapper* that pools eco-GIS tools allowing to:
 – Prepare the **variable maps** (circular analysis, normalisation, etc.)
 – **Explore** them (visually and statistically)
 – Model the species **ecological niche**
 – Build **Habitat Suitability maps**
 – Evaluate them

• More information and download on http://www.unil.ch/biomapper
Related papers and co-authors

