The Need for 3D Visualization in Astronomy

Jens Kauffmann
Harvard Initiative in Innovative Computing
& Harvard-Smithsonian CfA
Cambridge, MA

ADASS Tutorial: 3D Visualization in Astronomy
London, 2007 September 23
3D Visualization of Astronomy Data

L1448 in diverse tracers (Kauffmann et al., in prep.)
This sets the agenda for today's tutorial.

Negative Comments

- “Why not channel maps?”
- “Why not IDL?”
- “Why these pretty pictures?”

Positive Comments

- “Smashing! How can I make such plots?”
- “Can one identify objects?”
- “What data can one visualize?”

L1448 in diverse tracers (Kauffmann et al., in prep.)
3D Visualization of Astronomy Data

L1448 in diverse tracers (Kauffmann et al., in prep.)

Negative Comments
- “Why not channel maps?”
- “Why not IDL?”
- “Why these pretty pictures?”

Positive Comments
- “Smashing! How can I make such plots?”
- “Can one identify objects?”
- “What data can one visualize?”

Jens Kauffmann (IIC & CfA)
3D Visualization of Astronomy Data

L1448 in diverse tracers (Kauffmann et al., in prep.)

This sets the agenda for today’s tutorial...

Negative Comments

- “Why not channel maps?”
- “Why not IDL?”
- “Why these pretty pictures?”

Positive Comments

- “Smashing! How can I make such plots?”
- “Can one identify objects?”
- “What data can one visualize?”
Outline

1. Research Situations with 3D Needs
 - Spatial 3D Data & Simulations
 - Observational Data Cubes
 - Tabulated Data

2. Software: Requirements & Available Packages

3. Summary
Outline

1. Research Situations with 3D Needs
 - Spatial 3D Data & Simulations
 - Observational Data Cubes
 - Tabulated Data

2. Software: Requirements & Available Packages

3. Summary
Research Situations with 3D Needs

Astronomical Research Pipeline

Observer's Pipeline
- take data
- reduce data

Theorist's Pipeline
- create data
- analyze data:
 - quick visualization
 - quick quantification
- publish results:
 - high quality visualization
 - high quality quantification
- popularize results

Jens Kauffmann (IIC & CfA)

The Need for 3D in Astronomy

ADASS 3D Tutorial 5 / 20
Research Situations with 3D Needs

Astronomical Research Pipeline

Observer's Pipeline
- take data
- reduce data
- analyze data:
 - quick visualization
 - quick quantification
- publish results:
 - high quality visualization
 - high quality quantification
- popularize results

Theorist's Pipeline
- create data

obvious use of 3D

Jens Kauffmann (IIC & CfA)
Astronomical Research Pipeline

Observer's Pipeline
- take data
- reduce data
- analyze data:
 - quick visualization
 - quick quantification
- publish results:
 - high quality visualization
 - high quality quantification
- popularize results

Theorist's Pipeline
- create data
- non-obvious use of 3D (this section's focus)

obvious use of 3D
Outline

1. Research Situations with 3D Needs
 - Spatial 3D Data & Simulations
 - Observational Data Cubes
 - Tabulated Data

2. Software: Requirements & Available Packages

3. Summary
there is a very limited number of observational datasets with three spatial dimensions

usual reasoning:
age, τ, and speed, v, known \Rightarrow
$s = v \cdot \tau$, scale along line of sight can be calculated

simulations are further obvious merely spatial datasets
Outline

1. Research Situations with 3D Needs
 - Spatial 3D Data & Simulations
 - Observational Data Cubes
 - Tabulated Data

2. Software: Requirements & Available Packages

3. Summary
Research Situations with 3D Needs
Observational Data Cubes

Spectra Across an Area

L1148 in CCS (2$_1$–1$_0$) (Kauffmann et al., in prep.)

example: a cloud mapped in CCS
Research Situations with 3D Needs

Observational Data Cubes

Spectra Across an Area

example: a cloud mapped in CCS

single observation: $I(\nu)$

conversion to velocity: $\nu \rightarrow v = c \cdot (\nu_0 - \nu)/\nu_0$, for given rest frequency, ν_0, i.e., uses Doppler effect
example: a cloud mapped in CCS

mapping observations: $I(\nu)$ at given (α, δ)

rewritten: $I(\nu, \alpha, \delta)$, i.e., 3D field

continuous cubes are called volumes
Visualization Approaches

array of spectra: i.e., plot $I[\nu]$ at given $[\alpha, \delta]$
Visualization Approaches

Research Situations with 3D Needs

Observational Data Cubes

array of spectra: i.e., plot $I[v]$ at given $[\alpha, \delta]$

channel maps: i.e., plot $I[\alpha, \delta]$ at given v

L1448 in 13CO (1–0)

all L1448 data: COMPLETE survey,

http://www.cfa.harvard.edu/COMPLETE/

Jens Kauffmann (IIC & CfA)

The Need for 3D in Astronomy

ADASS 3D Tutorial 10 / 20
Visualization Approaches

array of spectra: i.e., plot $I[v]$ at given $[\alpha, \delta]$

channel maps: i.e., plot $I[\alpha, \delta]$ at given v

position-velocity-diagrams: e.g., plot $I[v, \alpha]$ at given δ

L1448 in ^{13}CO (1–0)
Visualization Approaches

array of spectra: i.e., plot I_ν at given $[\alpha, \delta]$

- [Image of array of spectra]

channel maps: i.e., plot $I_{\alpha, \delta}$ at given ν

- [Image of channel maps]

position-velocity-diagrams: e.g., plot $I_{\nu, \alpha}$ at given δ

- [Image of position-velocity-diagrams]

3D visualization: i.e., plot $I_{\nu, \alpha, \delta}$ — without further constraints

L1448 in 13CO (1–0)

- [Image of 3D visualization]

Jens Kauffmann (IIC & CfA)

The Need for 3D in Astronomy

ADASS 3D Tutorial
Visualization Approaches

array of spectra: i.e., plot $I[v]$ at given $[\alpha, \delta]$

![Array of Spectra](image1.png)

channel maps: i.e., plot $I[\alpha, \delta]$ at given v

![Channel Maps](image2.png)

position-velocity-diagrams: e.g., plot $I[v, \alpha]$ at given δ

![Position-Velocity Diagrams](image3.png)

3D visualization: i.e., plot $I[v, \alpha, \delta]$ — without further constraints

![3D Visualization](image4.png)

choice of visualization approach is based on *scientific problem, personal preferences, and data size*

all approaches except for 3D require memorizing during data analysis

3D visualization is thus particularly interesting for the *analysis of large datasets*
Ridge et al. (2006):

a 10 pc shell of warm (29 K) dust in Perseus

probably driven by expanding HII-region

relation to molecular cloud?
Illustration: Feature-Discovery in Large Datasets

13CO channel maps:
no obvious features
map has 250 000 pixels...

8 μm emission knots:
one out of three shows unusual 13CO velocities
Illustration: Feature-Discovery in Large Datasets

\(^{13}\)CO 3D visualization:

clear indication for extended emission from the shell

(Borkin & Arce, in prep.)
Outline

1. Research Situations with 3D Needs
 - Spatial 3D Data & Simulations
 - Observational Data Cubes
 - Tabulated Data

2. Software: Requirements & Available Packages

3. Summary
non-volumetric data:
- data towards specific positions
- interesting for archival research

dense cores in Perseus seen in Topcat
Research Situations with 3D Needs

Tabulated Data

non-volumetric data:
- data towards specific positions
- interesting for archival research

interactive selection of objects crucial for archival work

generally: tools are important features of viewing software

dense cores in Perseus seen in Topcat
Outline

1. Research Situations with 3D Needs
 - Spatial 3D Data & Simulations
 - Observational Data Cubes
 - Tabulated Data

2. Software: Requirements & Available Packages

3. Summary
obvious variations in requirements:

- data format
- availability of tools
- level of specialization
Ranges in Software Requirements

obvious variations in requirements:
- data format
- availability of tools
- level of specialization

not so obvious variations:
- interactivity & GUIs
- figure quality & complexity
Figure Quality & Complexity

L1148 in CCS (2₁⁻¹₀) (Kauffmann et al., in prep.)

Publication-quality plots have other requirements than data analysis plots.

Script-driven 3D software with high resolution output is needed here.
Ranges in Software Requirements

obvious variations in requirements:
- data format
- availability of tools
- level of specialization

not so obvious variations:
- interactivity & GUIs
- figure quality & complexity

there is no standard application that meets all requirements at the same time

different users will need different packages
Available Software: Presented at ADASS 07

3D visualization tools: also come Tuesday, 1:30 pm

<table>
<thead>
<tr>
<th>Name</th>
<th>Presentation</th>
<th>Aim</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Slicer</td>
<td>O7.1, O7.2, D4</td>
<td>spectral data cubes (+ anything else)</td>
</tr>
<tr>
<td>OsiriX</td>
<td>this tutorial</td>
<td>spectral data cubes (+ any volume)</td>
</tr>
<tr>
<td>VisIVO</td>
<td>this tutorial</td>
<td>anything</td>
</tr>
<tr>
<td>S2PLOT</td>
<td>O7.3, P2.4</td>
<td>anything</td>
</tr>
<tr>
<td>Gaia 3D</td>
<td>P2.7</td>
<td>spectral data cubes</td>
</tr>
<tr>
<td>TopCat</td>
<td>D14</td>
<td>any tabulated data</td>
</tr>
</tbody>
</table>

colored packages are demo’ed in this tutorial

packages related to 3D:

<table>
<thead>
<tr>
<th>Name</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALPix</td>
<td>P2.2</td>
</tr>
<tr>
<td>MUSE tools</td>
<td>P2.9</td>
</tr>
<tr>
<td>Euro3D</td>
<td>P1.20</td>
</tr>
</tbody>
</table>

packages are complementary because of different aims

program list: join us at http://am.iic.harvard.edu/RelatedProjects

many of them used also in further posters and demos
Outline

1. Research Situations with 3D Needs
 - Spatial 3D Data & Simulations
 - Observational Data Cubes
 - Tabulated Data

2. Software: Requirements & Available Packages

3. Summary
Summary

3D astronomy software:
- not only for pretty pictures
- also for non-spatial data
- different for different users

Come and try out!