Preliminary Evaluation of the Underprediction Rate of the In Vivo Dermal Irritation Test Method
Part I: Introduction

William S. Stokes, D.V.M., D.A.C.L.A.M.
Director, NICEATM
Scientific Advisory Committee on Alternative Toxicological Methods
October 20, 2004
Research Triangle Park, NC
Acknowledgements

ICCVAM Dermal Corrosivity and Irritation Working Group (DCIWG)

Marilyn Wind, CPSC
Kailash Gupta, CPSC
Barnett Rattner, DOI
Steve Hwang, DOT
George Cushmac, DOT
Angela Auletta, EPA
Masih Hashim, EPA
Leonard Keifer, EPA
Marianne Lewis, EPA
John Redden, EPA
Mark Perry, EPA
Amy Rispin, EPA (Co-Chair)
Hari Mukhoty, EPA
Karen Hamernik, EPA
Debbie McCall, EPA
Leonard Schechtman, FDA
Robert Bronaugh, FDA
Jill Merrill, FDA
Donnie Lowther, FDA
Abby Jacobs, FDA (Co-Chair)
Vera Hudson, NLM
William Stokes, NIEHS
William Eastin, NIEHS
Buck Grissom, NIEHS
Rajendra Chhabra, NIEHS
Surender Ahir, OSHA
Acknowledgements

• Dr. Joe Haseman, NIEHS/NTP Biostatistician (Retired)

• NICEATM Staff
 – Dr. David Allen, ILS Inc.
 – Dr. Neepa Choksi, ILS Inc.
 – Dr. Ray Tice, ILS Inc.

• Data Source
Outline

• Introduction
 – Background
 – Current Testing Procedures
 – Prior Analyses
 – Study Objectives
 – Database
 – Future Plans

• Data Analysis
Background

- Draize rabbit skin test method
 - Used since the 1940’s to identify skin irritants and corrosives

- Skin corrosion: the production of irreversible damage to skin following application of a test substance for up to 4 hrs

- Skin irritation: the production of reversible damage to skin following application of a test substance for up to 4 hours
Background

• 2003 Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
 – Tiered testing approach incorporating the use of valid and accepted in vitro methods for dermal irritation should be considered

• Non-animal alternative methods proposed for assessing dermal irritation
 – EPISKIN™, EpiDerm™, and SIFT
 – ECVAM validation in progress

• Estimates of the underprediction likely in an animal would assist with interpreting the usefulness and limitations of in vitro test methods
Tiered-Testing Strategy

Valid and accepted *in vitro* dermal corrosion test

- Negative Response or no data

Valid and accepted *in vitro* dermal irritation test*

- Negative response or no data

In vivo dermal corrosion (1 animal)

- Negative response

In vivo dermal irritation test (3 animals total)

- Negative response

When is it ethical to perform human patch testing?

- Not as above

Positive Response → Classify as corrosive

Positive Response → Classify as irritant

Corrosive response → Classify as corrosive

Irritant response → Classify as irritant

No further testing → Classify as non-irritant

Irritant response → Classify as irritant

Non-irritant response → No further testing

*Must be capable of detecting false negative chemicals from an *in vitro* corrosivity test.
Current Testing Procedures

- Draize rabbit skin test method

- Current test guideline procedures since 1981 (OECD TG 404)

- Test method protocol
 - 0.5 mL or 0.5 g of test substance applied to intact skin with patch for 4 hours
 - Originally 6 animals; reduced to 1-3 animals in 1992
 - Test substance removed after 4 hr exposure period
 - Erythema and edema scored at 24, 48, and 72 hours
 - Observation for 14 days to determine persistence or delayed effects
Dermal Irritation Scoring

• Erythema
 1 = Very slight (barely perceptible)
 2 = Well defined
 3 = Moderate to severe
 4 = Severe erythema (beefy redness) to eschar formation preventing grading of erythema

• Edema Scores
 1 = Very slight (barely perceptible)
 2 = Slight (edges of area well defined by definite raising)
 3 = Moderate (raised approximately 1 mm)
 4 = Severe (raised more than 1 mm and extending beyond area of exposure)
Hazard Classification for Dermal Irritation

• UN Globally Harmonized System (GHS), 2003

• Classification Scheme
 – **Irritant**
 - At least 2 animals have an average erythema or edema score that is greater than 2.3
 – **Mild irritant**
 - At least 2 animals have an average erythema or edema score that is between 1.5 and 2.3
 – **Nonirritant**
 - If no more than 1 animal has an average erythema or edema score that is greater than 1.5
Prior Analysis of the Reproducibility of the Rabbit Dermal Irritation Test

• Weil and Scala (1971)
 – Evaluated the reproducibility of the Draize rabbit skin test method within and among 24 laboratories for 10 substances
• This study is the only formal evaluation of the reproducibility of the Draize rabbit skin test method
• Conclusions
 – Moderate intra-laboratory reproducibility
 – Low inter-laboratory reproducibility
 – Primary reasons for the low inter-laboratory reproducibility attributed to the subjective nature of the visual observations and variations in procedures among labs

Limitations of the Weil and Scala Analysis

- The standard protocol used was different from the current Draize \textit{in vivo} rabbit skin test method protocol in use since 1981
 - The Weil and Scala studies used a 24-hour exposure period versus the current maximum 4-hour exposure
 - Prolonged exposure likely responsible for corrosive lesions observed for several irritants

- Good Laboratory Practice (GLP) Guidelines had not yet been established
 - Impact unknown
Study Objectives

• Evaluate ECETOC Chemical Data Bank to estimate the likelihood of underpredicting:
 – An irritant as a mild irritant
 – An irritant as a non-irritant
 – A mild irritant as a non-irritant

• Data may assist in decisions on acceptable false-negative rate for irritant effects for *in vitro* test methods proposed as complete replacements for the rabbit skin test
 – i.e., those tests where no *animal* testing would be performed and *in vitro* results would serve as the basis for hazard classification and labeling
In Vivo Dermal Irritation Database

- ECETOC Reference Chemicals Data Bank
 - 164 chemicals in 197 studies
 - Represent a wide range of chemical classes
 - Studies were performed according to OECD TG 404 and GLPs
 - 23 chemicals were tested in multiple studies
 - Most chemicals tested in 3-6 animals

<table>
<thead>
<tr>
<th>Source</th>
<th>Number of Animals Used per Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ECETOC(^1)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^1\)European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Skin Irritation and Corrosion: Reference Chemicals Data Bank. Technical Report No. 66. Belgium. (All studies followed OECD TG 404 and GLP Guidelines)
Future Analysis Plans

• Continue to seek high quality test data to add to the database:
 – Federal Register Notice (July 16, 2003)
 ◊ Requested in vivo dermal data for chemicals that could be considered for reference chemicals
 – EPA TSCATS database
 ◊ Current collaboration with EPA OPPTS to obtain reports for ~2400 commercially available chemicals with dermal test results
 ◊ 638 reports reviewed to date, but:
 o Limited individual animal data provided
 o Many studies were conducted prior to 1981 (exposure of 24 hr vs. 4 hr)

• Perform reanalysis when EPA data review completed
Preliminary Evaluation of the Underprediction Rate of In Vivo Dermal Irritation Test Method
Part II: Data Analysis

Joseph Haseman, Ph.D.
Scientific Advisory Committee on Alternative Toxicological Methods
October 20, 2004
Research Triangle Park, NC
Definition of Underprediction Rate

- The under-prediction rate of an irritation test is defined as the probability that an irritant substance will not be classified as an irritant when subjected to the test
 - e.g., it will produce responses that classify an irritant as a non-irritant in the rabbit model
- The underprediction rate depends on
 - the distribution of animal responses for substances assigned to a specific classification category
 - the strategy that is used to assign a test substance to a classification category
Classification of Potential Outcomes

<table>
<thead>
<tr>
<th>Erythema or Edema Score</th>
<th>Classification</th>
<th>Probability Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.5</td>
<td>Negative</td>
<td>((P_N)^3)</td>
</tr>
<tr>
<td>1.5-2.3</td>
<td>Negative</td>
<td>(3P_N^2P_M)</td>
</tr>
<tr>
<td>>2.3</td>
<td>Negative</td>
<td>(3P_N^2P_I)</td>
</tr>
<tr>
<td></td>
<td>Mild Irritant</td>
<td>(6P_NP_M^2P_I)</td>
</tr>
<tr>
<td></td>
<td>Mild Irritant</td>
<td>(3P_M^2P_N)</td>
</tr>
<tr>
<td></td>
<td>Mild Irritant</td>
<td>((P_M)^3)</td>
</tr>
<tr>
<td></td>
<td>Mild Irritant</td>
<td>(3P_M^2P_I)</td>
</tr>
<tr>
<td></td>
<td>Irritant</td>
<td>(3P_I^2P_N)</td>
</tr>
<tr>
<td></td>
<td>Irritant</td>
<td>(3P_I^2P_M)</td>
</tr>
<tr>
<td></td>
<td>Irritant</td>
<td>((P_I)^3)</td>
</tr>
</tbody>
</table>

\(P_N\): probability that erythema/edema score < 1.5; \(P_M\): score = 1.5-2.3, \(P_I\): score > 2.3
Calculation of the Underprediction Rate

• The distribution of animal responses for each irritancy class (i.e., irritant, mild irritant, nonirritant) was calculated.

• Using this distribution and the possible outcomes provided in the previous table, response probabilities were calculated for each outcome for a specific irritancy classification.

• For each irritancy classification, these probabilities were then summed to provide an overall classification likelihood.

• 2 approaches were used:
 1) All substances in the database were used, OR
 2) Only substances tested multiple times were used
Distribution of Animal Scores (Approach 1)

<table>
<thead>
<tr>
<th>Estimated Probability of … (No. animals)</th>
<th>True Classification of Test Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonirritant</td>
</tr>
<tr>
<td>An animal scoring < 1.5</td>
<td>95.7% (222)</td>
</tr>
<tr>
<td>An animal scoring 1.5 - 2.3</td>
<td>3.9% (9)</td>
</tr>
<tr>
<td>An animal scoring > 2.3</td>
<td>0.4% (1)</td>
</tr>
</tbody>
</table>

No. Studies Evaluated

| | 66 | 88 | 43 |

The table above illustrates the distribution of animal scores for different classifications of test substances. The estimated probabilities and the number of animals for each classification are provided.
Example Calculation of Probability - Likelihood of a Nonirritant being Classified as a Nonirritant

<table>
<thead>
<tr>
<th>Erythema or Edema Score</th>
<th>Classification</th>
<th>Probability Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.5</td>
<td>3</td>
<td>(P_N)^3</td>
</tr>
<tr>
<td>1.5 - 2.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>> 2.3</td>
<td>0</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Probabilities:

\[
(P_N)^3 + 3P_N^2P_M + 3P_N^2P_I = (0.957)^3 + [3(0.957)^2(0.039)] + [3(0.957)^2(0.004)] = 0.995 = 99.5\%
\]
Estimated Probabilities of Classification (Approach 1)

<table>
<thead>
<tr>
<th>Our Classification of Test Substance</th>
<th>True Classification of Test Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Negative 99.5%</td>
</tr>
<tr>
<td>Mild Irritant</td>
<td>Negative 0.5%</td>
</tr>
<tr>
<td>Irritant</td>
<td>Irritant <0.01%</td>
</tr>
</tbody>
</table>
Distribution of Animal Scores (Approach 2)

<table>
<thead>
<tr>
<th>Estimated Probability of ... (No. animals)</th>
<th>True Classification of Test Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonirritant</td>
</tr>
<tr>
<td>An animal scoring < 1.5</td>
<td>91.7% (55)</td>
</tr>
<tr>
<td>An animal scoring 1.5 - 2.3</td>
<td>8.3% (5)</td>
</tr>
<tr>
<td>An animal scoring > 2.3</td>
<td>0% (0)</td>
</tr>
</tbody>
</table>

| No. Chemicals Evaluated | 8 | 12 | 3 |
Estimated Probabilities of Classification (Approach 2)

<table>
<thead>
<tr>
<th>True Classification of Test Substance</th>
<th>Negative</th>
<th>Mild Irritant</th>
<th>Irritant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>98.0%</td>
<td>3.7%</td>
<td>0%</td>
</tr>
<tr>
<td>Mild Irritant</td>
<td>2.0%</td>
<td>94.0%</td>
<td>38.7%*</td>
</tr>
<tr>
<td>Irritant</td>
<td>0%</td>
<td>2.2%</td>
<td>61.3%</td>
</tr>
</tbody>
</table>

Database includes only 3 irritants
Estimated Underprediction Rates of the *In Vivo* Dermal Irritation Test Method

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Approach 1*</th>
<th>Approach 2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underprediction of Irritant as Mild Irritant</td>
<td>10.3%</td>
<td>38.7%**</td>
</tr>
<tr>
<td>Underprediction of Irritant as Negative</td>
<td>0.01%</td>
<td>0%</td>
</tr>
<tr>
<td>Underprediction of Mild Irritant as Negative</td>
<td>5.5%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Underprediction of Irritant and Mild Irritant as Negative</td>
<td>5.5%</td>
<td>3.7%</td>
</tr>
</tbody>
</table>

*Approach 1 = All chemicals used; Approach 2 = Only multiply-tested chemicals

**Database includes only 3 irritants
Mean Scores for the 3 Multiply Tested Skin Irritants

<table>
<thead>
<tr>
<th>Chemical (Study No.)</th>
<th>Mean Erythema</th>
<th>Mean Edema</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An. 1</td>
<td>An. 2</td>
</tr>
<tr>
<td>Alpha-terpineol (1)</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Alpha-terpineol (2)</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Alpha-terpineol (3)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Cyclamen aldehyde (1)</td>
<td>2.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Cyclamen aldehyde (2)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Cyclamen aldehyde (3)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Cyclamen aldehyde (4)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Lilestralis/Lilial (1)</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Lilestralis/Lilial (2)</td>
<td>2.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Conclusions

• Within the limits of the assumptions, the under-prediction of:
 – an irritant as a mild irritant ranged from 10.3% to 38.7%*
 – an irritant as a nonirritant ranged from 0% to 0.01%
 – a mild irritant as a nonirritant ranged from 3.7% to 5.5%

• Based on these data, the likelihood that an irritant would be misclassified as a nonirritant is less than 0.01%.

• The relatively small number of irritants among the multiply-tested substances may impact the reliability of the estimated underprediction rate.

*The 38.7% underprediction rate is based on only 3 irritants